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We present a new analytic method which allows one to interpret a mass-action kinetic
reaction of arbitrary molecularity as the limit case of a sequence of bimolecular steps.
Together with other technics (transformation of an arbitrary ODE into a polynomial ODE [8];
transformation of a polynomial ODE into a form which can be interpreted as a mass-action
kinetic system [10]), it is thus possible to construct an at most bimolecular mass-action
kinetic system with the same dynamic behavior as an arbitrary ODE. Furthermore, we
demonstrate necessary improvements of the transformation given in [10]. Is is also shown
that an arbitrary single mass-action kinetic reaction can be understood as a sequence of
two reactions with a short-living intermediate. In particular, it therefore follows that an
autocatalytic reaction can always be approximated by two nonautocatalytic ones without
changing the dynamics of the whole system.

1. Introduction

In the last decades chemical reaction systems has become one of the favorite
physical objects to study nonlinear behavior, both, experimentally and theoretically.
The famous Belousov–Zhabotinsky system [23] is without doubt the most prominent
experimental research object in this field. To model its dynamic behavior, e.g., the
well-known “Oregonator” [6] has been proposed. The study of oscillating reaction
systems dates back to Lotka [11,12]. (The same system has independently been stud-
ied by Volterra in a population-kinetic context [19].) Bray [2] has at first documented
experimentally observed sustained oscillating reactants. However, these early obser-
vations have been ignored more or less by the most scientists, because in their eyes
sustained oscillations contradicted the fundamental second law of thermodynamics. It
is much owing to the work of Prigogine and his coworkers that this contradiction has
been resolved. The Brussels group showed that far from equilibrium highly ordered
structures in time and space (the so-called “dissipative structures”) can arise in accor-
dance with the laws of thermodynamics [7]. They also proposed the much studied
“Brusselator” [13].

There are several approaches to construct new chemical reaction systems with
“interesting” dynamic behavior, mainly multistable and oscillating ones. The work
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of Epstein (cf. [4]), e.g., is rather experimentally oriented. In a more theoretical
approach [21,22], based on a definition for “smallness”, the “smallest chemical reaction
system with Hopf bifurcation” has been proposed.

A straightforward theoretical approach is based on the idea to start with an arbi-
trary dynamical system and to transform it into a form which can be interpreted as a
chemical system. A chemical reaction has the general “reaction equation”∑

i

ν+
i Xi

k+

k−

∑
i

ν−i Xi (ν+
i , ν−i , k+, k− > 0, i = 1, 2, . . .). (1)

The kinetics of such a reaction is usually assumed to be of the mass-action type, i.e. the
reaction velocity is assumed to be proportional to the concentrations of the involved
reactants (in consideration of their molecularity). The corresponding differential equa-
tions, therefore, have a polynomial form. In (1) k+ and k− denote the rate coefficients
of the forward and backward unidirectional reaction, respectively. Xi is the ith variable
reactant (its concentration will be denoted by the small letter xi) and ν+

i and ν−i are
its stoichiometric coefficients. The constant substances and products are assumed to
be incorporated into the rate constants k+ and k−, respectively.

The most natural way for a transformation of arbitrary differential equations into
chemical ones is, of course, an affine one. Thereby the number of variables remains
the same and the dynamic behavior is not changed because of the linearity of the
procedure. For two-dimensional systems the general affine transformation of arbitrary
ODEs into quadratic mass-action kinetic (MAK) systems has been discussed in [5].
It has successfully been demonstrated that “any normal bifurcation of a limit cycle
that is possible in a plane system” can “occur in quadratic mass-action systems, too”.
However, for three- and higher-dimensional systems (which are necessary for, e.g.,
“chaotic” behavior) the according calculation has not been carried out up to now. The
reason is the rapidly increasing complexity of the necessary algebraic calculations if
the dimension is increased only by one.

Searching for the “minimal MAK-system with chaotic dynamics” one can start
with the minimal polynomial chaotic systems which has been found numerically
[17,18]. We could affine transform some of these systems into mass-action kinetic
ones, but only in such a way that the interesting, the chaotic behavior occurs in re-
gions of the phase space corresponding to negative concentrations. (In contrast to
Escher [5], we restricted ourselves to the only realistic case of at most bimolecular
reactions, see below.) One could try nonlinear transformations (whereby the inverse
of the transformation should be bounded in the whole transformed domain to ensure
the global uniqueness), but generally the necessary algebraic calculations are quite
cumbersome.

Other transformations have been proposed which conserve the main features of
the dynamics of the system (cf. [8,10]). These are based on the idea to introduce
further suitable variables. The dynamics of the new system then takes place on an in-
variant manifold in the enlarged phase space. The initial conditions have to be chosen
appropriately. In [8] it has been shown that “very general nonlinear ordinary differen-
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tial systems (embracing all that arise in practice)” may be brought down to quadratic
polynomial systems. In [10] the possibility has been demonstrated to transform poly-
nomial systems into a form which can be interpreted as a MAK-system. However, it
is necessary to discuss this transformation in more detail. This is done in section 2
of this work. Another transformation of arbitrary polynomial systems into chemical
ones has been given in [14]. The problem is that the dynamics may be changed by
this procedure.

There is one important point which needs to be discussed in the context of trans-
formations into chemical systems. Even if a system has been transformed into a
quadratic mass-action kinetic one (by [8,10] and section 2, or [8,14]), generally there
still remain terms which cannot be interpreted by bimolecular reactions. The term
ẋ = kx2 with k > 0 at least corresponds to the trimolecular reaction A + 2X → 3X
where A is supposed to be constant. Also Escher excluded only “the occurrence of
higher than bimolecular reactions with respect to the two intermediates” and in fact
in all of his examples the reaction A + 2X → 3X occurs (cf. [5]). It, therefore,
remains the question how to transform systems with such “hidden” trimolecularities
into real at most bimolecular ones without changing the dynamic behavior. A sim-
ilar problem has been treated in another context. The “Brusselator” [13] has often
been criticized because of its unrealistic trimolecular reaction X + 2Y → 3Y, where
X and Y are variable intermediates. In [3] three different bimolecular schemes have
been analysed which can in a limit case be approximated by the trimolecular reac-
tion.

In a recent work [15] we have shown in the most general way how singularly
perturbed systems can also in critical cases (singular singularly perturbed systems)
where the standard theory does not work be approximated by regularly perturbed
ones. As an example we have demonstrated how the trimolecular autocatalator (also
termed Gray–Scott, Schnakenberg or Higgins–Selkov system) [1] can be obtained as
the limit case of an at most bimolecular reaction system. Our method is both more
rigorous and simple compared with [3].

Using the general method of [15] in section 3.1 of this work we demonstrate
how every trimolecular reaction can be understood as the limit case of two bimole-
cular reactions. In section 3.2 we show how 4-molecular reactions follow as limit
case of a sequence of bimolecular steps. The general n-molecular case becomes ob-
viously.

In the context of oscillating reaction systems the role of autocatalytic reactions
has often been discussed (e.g., [7]). Whereas in general chemical systems there is no
simple definition for “autocatalyticity”, a MAK-reaction (1) is autocatalytic if

ν+
i 6= 0, ν−i 6= 0, ν+

i 6= ν−i (2)

for at least one reactant Xi. Note that both transformations of polynomial systems into
mass-action kinetic ones [10,14] yield for all systems with nontrivial dynamics also
autocatalytic reactions. However, in [20] we have proven that in contrast to former
assumptions an autocatalytic reaction is not necessary for a locally unstable steady
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state of the considered system and have given a counterexample with a supercritical
Hopf bifurcation of the steady state. In section 4 we show that an arbitrary single
MAK-reaction can be understood as a sequence of two reactions with a short-living
intermediate. Together with the results of [8,10] and sections 2 and 3 it follows that
(nearly, cf. [8]) every dynamic behavior can be realized by mass-action systems without
autocatalytic reactions in the sense of (2).

In [9], e.g., it has been claimed that “reactions in which the same substance
appears both as reactant and as product”, even if they are of bimolecular type, are not
elementary reactions. It follows from the result of section 4 that every such reaction
can be decomposed into two real elementary reactions, yielding in the limit case exactly
the same dynamic behavior as in the original system.

Altogether, the results of [8,10] and of this work justify the statement that mass-
action kinetic systems consisting only of elementary reactions are a paradigma for
nonlinear behavior.

2. Transformation of an arbitrary ODE into a form which can be interpreted
as a MAK-system

Based on “an ancient and very simple device, that of introducing appropriate
collectives of variable and parameters as new variables” in [8] it has been shown
that without changing the dynamics a very general ODE may be transformed into a
polynomial ODE with only quadratic nonlinearities. For a demonstration of the idea
we consider the simple initial value problem (IVP)

ẋ = x exp(x) (3)

with x(t = 0) = x0. With the further variable y = exp(x) system (3) is transformed
into the polynomial form

ẋ= xy,

ẏ = xy2,
(4)

which has exactly the same dynamics as the IVP (3) for the initial values x(t = 0) = x0,
y(t = 0) = y0 = exp(x0). The dynamics of the two-dimensional system (4) then takes
place on the one-dimensional invariant manifold y = exp(x):

d(y − exp(x))
dt

= x
(
y2 − exp(2x)

)
,

so that

d(y − exp(x))
dt

= 0 ∀t
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if y0 = exp(x0). Note that the invariant manifold is not a first integral, because the
latter exists independently of the initial values (cf. [15]). With the further variable
z = xy the cubic polynomial system (4) is transformed into the quadratic one

ẋ= z,

ẏ= yz, (5)

ż= z(y + z),

again with the property

d(z − xy)
dt

= 0 ∀t

if z0 = x0y0.
Of course, not every quadratic polynomial system can be interpreted as a mass-

action kinetic one. A MAK-system is confined to the positive cone of the phase space.
Consider, e.g., two variables x and y, then the term

ẋ = −y2 (6)

violates this condition. In [10] a special introduction of further variables to transform
arbitrary polynomial differential systems into chemical ones has been proposed. With
the variable z = 1/x (with the fixed initial value z0 = 1/x0) (6) is transformed into
the MAK-system

ẋ= −xy2z,

ż= y2z2.
(7)

However, it is necessary to discuss the following problem in more detail. We
now study the invariance of the dynamic behavior during the transformation (of [10]).
We consider the general polynomial system

ẋ= f (x, y),

ẏ= g1(x, y) + g2(x, y)
(8)

with x ∈ Rm, y ∈ Rn where f , g2 contain only monomials which can be interpreted
as MAK-reactions and g1 contains only “non-chemical” monomials. With the further
variables

zi = 1/yi (9)

with zi0 = 1/yi0 (i = 1, . . . ,n) one obtains the system

ẋ= f (x, y),

ẏi = yizig1i(x, y) + g2i(x, y), (10)

żi =−z2
i

(
yizig1i(x, y) + g2i(x, y)

)
,
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which can be interpreted as a mass-action kinetic one. It follows that

d
dt

(
zi −

1
yi

)
= zig1i(x, y)

(
1
yi
− yiz2

i

)
+ g2i(x, y)

(
1

y2
i

− z2
i

)
,

and, therefore,

d(zi − 1/yi)
dt

= 0 ∀t

if zi0 = 1/yi0 . Thus the dynamics of the enlarged system (10) is confined to the
invariant manifold zi = 1/yi (i = 1, . . . ,n).

A problem arises at the singularity at yi = 0. The original continuous trajectories
connecting negative and positive yi values in the new system (10) become discontin-
uous. It follows that an arbitrary dynamic behavior of system (8) containing positive
and negative yi values is never invariant under the transformation (9). If a system with
such a dynamics should be transformed into a chemical one, at first it is necessary to
translate the relevant phase space points into the positive cone. Afterwards one should
introduce the necessary further variables (9).

We illustrate the procedure by the following example. In [10] was discussed the
Lorenz system

ẋ= σ(y − x),

ẏ= rx− y − xz, (11)

ż= xy − bz.

After introducing the further variable u = 1/y the so-termed “chemical Lorenz” was
obtained:

ẋ= σ(y − x),

ẏ= rx− y − xyzu,

ż= xy − bz,

u̇= u+ xu2(z − r).

(12)

However, the original Lorenz attractor contains positive and negative x, y values,
thus, system (12) does not show this attractor, the dynamics diverges. Because it
is possible to construct a “confined set” containing the Lorenz attractor [16], the
interesting dynamics is confined to a finite region of the phase space. Therefore,
it must be possible to find a translation in order to construct a “true chemical Lorenz”.
Indeed, after an appropriate translation (x + tx → x, y + ty → y, tx > −xmin,
ty > −ymin, the index min denotes the minimal value of the Lorenz attractor), and
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introduction of three further variables (x1 = 1/x, y1 = 1/y, z1 = 1/z), from (11) one
obtains the MAK-system

ẋ= σ(tx − x+ y)− σtyxx1,

ẏ= ty + rx+ txz − y − (txr + xz)yy1,

ż= txty + xy − bz − (txy + tyx)zz1,

ẋ1 = −x2
1

(
σ(tx − x+ y)− σtyxx1

)
,

ẏ1 = −y2
1

(
ty + rx+ txz − y − (txr + xz)yy1

)
,

ż1 = −z2
1

(
txty + xy − bz − (txy + tyx)zz1

)
,

(13)

(a)

(b)

Figure 1. Attractor of (a) the original (11) and (b) the chemical (13) Lorenz system (σ = 10, r = 28,
b = 8/3, tx = 20, ty = 30).
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which shows the Lorenz attractor (figure 1).
Thus we state the first general result: by introduction of further variables (at first

in a way proposed by Kerner [8] and, if necessary, after a suitable translation, secondly
in the way of Kowalski [10]) it is possible to construct a MAK-system with the same
dynamic behavior as an arbitrary (nonchemical) ODE.

An arbitrary MAK-system can, furthermore, be brought into a form containing
only linear and quadratic terms (cf. [8]). Thereby, one has to choose the new variables
thoroughly in order to conserve the property of the system to be of the MAK type.
With the new variable z = xy, for instance, the MAK-term ẋ = −x2y2 would be
transformed into the quadratic non-MAK-term ẋ = −z2.

However, as we have shown in the introduction, there are quadratic terms which
cannot be interpreted as bimolecular reactions, but only as unrealistic trimolecular
ones. A system containing, e.g., the term ẋ = kx2 with k > 0 cannot be transformed
into a bimolecular system with the methods discussed so far, independently of the
number of further variables. Note furthermore that the number of cubic or higher
order terms is not always reduced by one if one introduces one further variable in the
way of Kerner [8]. An example is the cubic nonlinearity ẋ = −xy2. If the differential
equation for y contains at least one quadratic term consisting of other variables than x
and y, the whole system after the introduction of a new variable still contains at least
one cubic term.

In the next section we show that every tri- or higher-molecular reaction can
be interpreted as the limit case of a sequence of bimolecular steps. Thereby, with
one further variable at least one trimolecular reaction can be interpreted as limit case
of bimolecular reactions, with two further variables at least one 4-molecular reac-
tion (or two trimolecular ones) can be approximated by bimolecular ones, and so
on.

3. High-molecular reactions as limit case of bimolecular ones

3.1. Trimolecular reactions as limit case of bimolecular ones

We demonstrate the general formalism which allows one to interpret an ar-
bitrary trimolecular reaction as the asymptotic limit case of two bimolecular reac-
tions.

Consider as special case of (1) the general irreversible trimolecular reaction

ν+
1 X1 + ν+

2 X2 + ν+
3 X3

k→ ν−1 X1 + ν−2 X2 + ν−3 X3 +
∑
r

ν−r Xr (14)

(
∑

i ν
+
i = 3, i = 1, 2, 3, r = 4, 5, . . .). The corresponding dynamic behavior of

the concentrations under the assumption of mass-action kinetics is described by the
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equations

ẋ1 =
(
ν−1 − ν

+
1

)
kx

ν+
1

1 x
ν+

2
2 x

ν+
3

3 ,

ẋ2 =
(
ν−2 − ν

+
2

)
kx

ν+
1

1 x
ν+

2
2 x

ν+
3

3 ,

ẋ3 =
(
ν−3 − ν

+
3

)
kx

ν+
1

1 x
ν+

2
2 x

ν+
3

3 ,

ẋr = ν−r kx
ν+

1
1 x

ν+
2

2 x
ν+

3
3 .

(15)

Examples are the reaction

A + 2X
k→ 3X (16)

(ν+
1 = 2, ν−1 = 3, ν+/−

i = 0, i = 2, . . .) described by

ẋ = k̃x2 (17)

(k̃ = ka) and the “Brusselator” reaction (cf. [13])

X + 2Y
k→ 3Y (18)

(ν+
1 = 1, ν−1 = 0, ν+

2 = 2, ν−2 = 3, ν+/−
i = 0, i = 3, . . .) described by the equations

ẋ= −kxy2,

ẏ= kxy2.
(19)

We now show that the same dynamics as (15) is obtained as limit case (k−1 →∞)
of two bimolecular reactions:

Xi + Xj
k1

k−1

Z,

Xk + Z
k2→ νiXi + νjXj + νkXk +

∑
r

νrXr + νzZ,
(20)

where the further intermediate Z has been introduced. With the small parameter
ε = 1/k−1 the corresponding dynamics is described by the equations

εẋi = z + ε(νik2xkz − k1xixj),

εẋj = z + ε(νjk2xkz − k1xixj),

ẋk = (νk − 1)k2xkz, (21)

εż =−z + ε
(
(νz − 1)k2xkz + k1xixj

)
,

ẋr = νrk2xkz.
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In [15] we have discussed equations of such a type in a general manner. In order to
approximate these equations asymptotically it is necessary to make the transformations
(without loss of generality, cf. [15])

(σ1,σ2) = (xi + z,xj + z), (22)

yielding

σ̇1 = (νi + νz − 1)k2xkz,

σ̇2 = (νj + νz − 1)k2xkz,

ẋk = (νk − 1)k2xkz, (23)

εż= εk1(σ1 − z)(σ2 − z)− z + ε(νz − 1)k2xkz,

ẋr = νrk2xkz.

Because the adjoint system ż = −z to the fast subsystem (the z-system) has the
globally stable steady state z̄ = 0 one can use the Ansatz

z = A(σ1,σ2,xk,xr) + εB(σ1,σ2,xk,xr) +O
(
ε2) (24)

to approximate the slow manifold (cf. [15]). By inserting this into the ż-equation in
(23) one obtains by comparison of the coefficients for equal powers of ε the first order
approximation for the fast variable z:

z =
k1

k−1
σ1σ2. (25)

(The zeroth order approximation z = 0 is not sufficient for our result.) From (23) it,
therefore, follows that

σ̇1 = (νi + νz − 1)
k1k2

k−1
xkσ1σ2,

σ̇2 = (νj + νz − 1)
k1k2

k−1
xkσ1σ2,

ẋk = (νk − 1)
k1k2

k−1
xkσ1σ2,

ẋr = νr
k1k2

k−1
xkσ1σ2.

(26)

These equations resemble the equations (15) describing the trimolecular reaction (14).
Indeed, for every concrete trimolecular reaction one can specify the reaction equa-
tions (20) in such a way that (15) and (26) become identical.

Generally, there is no unique way to specify the equations (20). Consider the
examples (16), (18) described by the equations (17), (19). For each one there are three
possibilities:
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1. The reaction (16) can be approximated by

(a) A + X
k1

k−1

Z, X + Z
k2→ 3X,

(b) X + X
k1

k−1

Z, A + Z
k2→ 3X,

(c) X + X
k1

k−1

Z, A + Z
k2→ X + Z.

2. The reaction (18) can be approximated by

(a) X + Y
k1

k−1

Z, Y + Z
k2→ 3Y,

(b) Y + Y
k1

k−1

Z, X + Z
k2→ 3Y,

(c) Y + Y
k1

k−1

Z, X + Z
k2→ Y + Z.

Comparison with (20) yields

(1) reaction (16):

(a) ẋ = ẋj + ẋk,

(b) ẋ = ẋi + ẋj ,

(c) ẋ = ẋi + ẋj ,

(2) reaction (18):

(a) ẋ = ẋi, ẏ = ẋj + ẋk,

(b) ẋ = ẋk, ẏ = ẋi + ẋj ,

(c) ẋ = ẋk, ẏ = ẋi + ẋj .

For each of these cases there are again different possibilities to adjoin to them
the proper stoichiometric coefficients ν:

(1) reaction (16):

(a) νi = 0, (νj , νk) = (0, 3) or (1, 2) or (2, 1) or (3, 0), νz = 0,

(b) (νi, νj) = (0, 3) or (1, 2) or (2, 1) or (3, 0), νk = 0, νz = 0,

(c) (νi, νj) = (0, 1) or (1, 0), νk = 0, νz = 1,

(2) reaction (18):

(a) νi = 0, (νj , νk) = (0, 3) or (1, 2) or (2, 1) or (3, 0), νz = 0,

(b) (νi, νj) = (0, 3) or (1, 2) or (2, 1) or (3, 0), νk = 0, νz = 0,

(c) (νi, νj) = (0, 1) or (1, 0), νk = 0, νz = 1.
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However, for both reactions (16), (18) each of the possibilities (a)–(c) including their
sub-cases for the adjoinment of the stoichiometric coefficients yields in the limit case
k−1 →∞, i.e. ε→ 0 (cf. (22), (25)), from (26) the unambiguous equations

(1) reaction (16):

ẋ =
k1k2

k−1
ax2, (27)

(2) reaction (18):

ẋ= −k1k2

k−1
xy2,

ẏ=
k1k2

k−1
xy2,

(28)

which are identical to (17), (19) with k = k1k2/k−1.
In the same way as we have demonstrated for the example reactions (16), (18)

it can be shown for every trimolecular reaction that the corresponding cubic term in
the differential equation follows as limit case (k−1 → ∞) from the two bimolecular
reactions (20).

Generally, for a transformation of a MAK-system containing trimolecular reac-
tions into a MAK-system with at most bimolecular ones (which has as limit case
exactly the same dynamics as the trimolecular scheme) one does not need one further
intermediate for each trimolecular reaction. For several trimolecular reactions which
all have two reactants in common one further intermediate is sufficient.

3.2. Higher-molecular reactions as limit case of bimolecular ones

Here we show generally that the dynamics of every 4-molecular reaction can
asymptotically be approximated by three bimolecular reactions. The general case
of arbitrary high-molecular reactions becomes obvious. The irreversible 4-molecular
reaction

ν+
1 X1 + ν+

2 X2 + ν+
3 X3 + ν+

4 X4
k→ ν−1 X1 + ν−2 X2 + ν−3 X3 + ν−4 X4 +

∑
r

ν−r Xr (29)

(
∑

i ν
+
i = 4, i = 1, . . . , 4, r = 5, 6, . . .) is under the assumption of mass-action kinetics

described by the equations

ẋ1 =
(
ν−1 − ν

+
1

)
kx

ν+
1

1 x
ν+

2
2 x

ν+
3

3 x
ν+

4
4 ,

ẋ2 =
(
ν−2 − ν

+
2

)
kx

ν+
1

1 x
ν+

2
2 x

ν+
3

3 x
ν+

4
4 ,

ẋ3 =
(
ν−3 − ν

+
3

)
kx

ν+
1

1 x
ν+

2
2 x

ν+
3

3 x
ν+

4
4 , (30)

ẋ4 =
(
ν−4 − ν

+
4

)
kx

ν+
1

1 x
ν+

2
2 x

ν+
3

3 x
ν+

4
4 ,

ẋr = ν−r kx
ν+

1
1 x

ν+
2

2 x
ν+

3
3 x

ν+
4

4 .
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We show that the same dynamics is obtained as limit case k−1 = O(k−2)→∞ of the
bimolecular reactions

Xi + Xj
k1

k−1

Z1,

Xk + Z1
k2

k−2

Z2, (31)

Xl + Z2
k3→ νiXi + νjXj + νkXk + νlXl +

∑
r

νrXr + νz1Z1 + νz2Z2,

where two further intermediates, Z1 and Z2, have been introduced. With the small
parameter ε = 1/k−1 the corresponding dynamics is described by the equations

εẋi = z1 + ε(−k1xixj + νik3xlz2),

εẋj = z1 + ε(−k1xixj + νjk3xlz2),

εẋk =
k−2

k−1
z2 + ε(−k2xkz1 + νkk3xlz2),

ẋl = (νl − 1)k3xlz2, (32)

εż1 =−z1 +
k−2

k−1
z2 + ε(k1xixj − k2xkz1 + νz1k3xlz2),

εż2 =−k−2

k−1
z2 + ε

(
k2xkz1 + (νz2 − 1)k3xlz2

)
,

ẋr = νrk3xlz2.

After the transformations

(σ1,σ2,σ3) = (xi + z1 + z2, xj + z1 + z2, xk + z2) (33)

it follows that

σ̇1 = (νi + νz1 + νz2 − 1)k3xlz2,

σ̇2 = (νj + νz1 + νz2 − 1)k3xlz2,

σ̇3 = (νk + νz2 − 1)k3xlz2,

ẋl = (νl − 1)k3xlz2,

εż1 = −z1 +
k−2

k−1
z2 + ε

(
k1(σ1 − z1 − z2)(σ2 − z1 − z2)

− k2(σ3 − z2)z1 + νz1k3xlz2
)
,

εż2 = −k−2

k−1
z2 + ε

(
k2(σ3 − z2)z1 + (νz2 − 1)k3xlz2

)
,

ẋr = νrk3xlz2.

(34)
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Because the adjoint system (ż1 = −z1 + (k−2/k−1)z2, ż2 = −(k−2/k−1)z2) to the fast
subsystem (z1, z2-system) has the globally stable steady state (0, 0), we can use the
Ansatz

z1 = A1(σ1,σ2,σ3,xl,xr) + εB1(σ1,σ2,σ3,xl,xr) +O
(
ε2
)
,

z2 = A2(σ1,σ2,σ3,xl,xr) + εB2(σ1,σ2,σ3,xl,xr) +O
(
ε2
) (35)

to approximate the slow manifold (cf. [15]). Inserting this into the fast subsystem one
obtains by comparison of the coefficients for equal powers of ε as approximation for
the fast variables

z1 =
k1

k−1
σ1σ2,

z2 =
k1k2

k−1k−2
σ1σ2σ3.

(36)

From (34) one, therefore, obtains

σ̇1 = (νi + νz1 + νz2 − 1)
k1k2k3

k−1k−2
σ1σ2σ3xl,

σ̇2 = (νj + νz1 + νz2 − 1)
k1k2k3

k−1k−2
σ1σ2σ3xl,

σ̇3 = (νk + νz2 − 1)
k1k2k3

k−1k−2
σ1σ2σ3xl, (37)

ẋl = (νl − 1)
k1k2k3

k−1k−2
σ1σ2σ3xl,

ẋr = νr
k1k2k3

k−1k−2
σ1σ2σ3xl.

These equations, obtained from a bimolecular approximation of an arbitrary 4-molec-
ular reaction (29), resemble the equations (30). This result is the 4-molecular equivalent
to the corresponding trimolecular equations (26), which were obtained from a bimolec-
ular approximation (20) of the general trimolecular reaction (14). In the same way as
for every trimolecular reaction it can for every 4-molecular reaction be shown that the
equations (30) and (37) are identical. Transforming a reaction network with several
4-molecular reactions into the corresponding bimolecular form, as in the trimolecular
case, generally not for every 4-molecular reaction one needs two further intermediates.

In the same manner n-molecular reactions can be obtained as limit case (k−1 =
O(k−i) → ∞ (i = 2, . . . ,n − 2)) of n − 1 bimolecular reactions with n − 2 further
intermediates.
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4. Interpretation of an arbitrary MAK-reaction as sequence of two reactions
with a short-living intermediate

Here we show that an arbitrary MAK-reaction∑
i

ν+
i Xi

k→
∑
i

ν−i Xi (i = 1, 2, . . .) (38)

(this is the irreversible case of reaction (1)) can be understood as the limit case
(k2 →∞) of two corresponding MAK-reactions with a short-living intermediate Z
which have the form ∑

i

ν+
i Xi

k1→ Z
k2→
∑
i

ν−i Xi. (39)

Reaction (38) is described by the differential equations

ẋi =
(
ν−i − ν

+
i

)
k
∏
i

x
ν+
i
i . (40)

Reaction (39) implies

εẋi = −εν+
i k1

∏
i

x
ν+
i
i + ν−i z,

εż = εk1

∏
i

x
ν+
i
i − z

(41)

with the small parameter ε = 1/k2. With the transformations

σi = xi + ν−i z (42)

one obtains

σ̇i =
(
ν−i − ν+

i

)
k1

∏
i

(
σi − ν−i z

)ν+
i ,

εż= εk1

∏
i

(
σi − ν−i z

)ν+
i − z.

(43)

Because the adjoint system ż = −z has the globally stable steady state z̄ = 0, one can
approximate the fast variable in zeroth order by

z = 0. (44)

It, therefore, follows that

σ̇i =
(
ν−i − ν

+
i

)
k1

∏
i

σ
ν+
i
i , (45)

which is, taking into account (42) and (44), exactly the equation (40).
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Note that in contradiction to the approximations made in section 3, here already
the zeroth order is sufficient to gain the desired result.

From this calculation two main results follow immediately. At first, every MAK-
reaction which is autocatalytic in the sense of (2) can be approximated by two reactions
in the form of (39), which are not autocatalytic in that sense. Secondly, every MAK-
reaction which is not elementary, because “the same substance appears both as reactant
and as product” (cf. [9]), can be approximated by two really elementary reactions.

5. Discussion

Summarizing, we have shown in sections 3 and 4 that it is possible to transform
an arbitrary MAK-system into a form which contains only mono- and elementary
bimolecular reactions. In the limit case the long-time dynamics of this system is exactly
identical with the dynamics of the original MAK-system. Together with the results
of [8,10] and section 2 this leads to the statement: for every dynamic phenomenon
which can occur in an ODE one can construct an elementary bimolecular MAK-system
which shows this behavior. The only restriction is that it must be possible to transform
a nonpolynomial system into a polynomial one, but this can be done for all cases “that
arise in practice” (cf. [8]). This justifies the title of this work: elementary chemical
reaction systems are a paradigma for nonlinear behavior.

For the transformation of an arbitrary ODE into an elementary MAK-system we
thus have the general scheme:

1. Transformation of a non-polynomial ODE into a polynomial one [8].

2. Transformation of a non-MAK-polynomial system into a MAK-system ([10] and
section 2).

3. Transformation of an arbitrary MAK-system into a bimolecular one (section 3).

4. Transformation of a bimolecular MAK-system into a MAK-system consisting only
of elementary reactions (section 4).

Note that for the second step the results of [10] are not sufficient. For instance,
none of the 19 small “chaotic” polynomial systems of [17,18] can in the way of [10]
be transformed into MAK-systems. For such a transformation a further translation is
necessary. This we have discussed in detail in section 2.

Another way for step 2 has been proposed in [14]. There the confinement of the
trajectories to the positive cone of the phase space is forced simply by a multiplication
of the phase flow by diag(x). This transformation has the advantage that the number of
variables in not increased. However, the dynamics may be changed by this procedure
and there is no way to guarantee exactly the same dynamics as in the original system,
neither by fixing the initial values like in [8,10] nor in the asymptotic limit like in
sections 3 and 4. Nevertheless, the transformed system often shows similar dynamics
as the original one (cf. [14]).
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Alternative to make the transformation of an arbitrary MAK-system into a bi-
molecular one (step 3) only in the way proposed in section 3, one can at first transform
the general MAK-system into a form which contains only quadratic terms (cf. [8,10]
and section 2). Afterwards one can transform these quadratic terms which cannot be
interpreted as a bimolecular reaction into the bimolecular form in the way of section 3.
However, using this way at first one must take care that one does not violate the MAK-
property (this can be done by thoroughly choosing the new variables), secondly, this
way generally needs more further variables (cf. section 2).

Note that in contrast to the methods of [8,10] for the new introduced variables
in sections 3 and 4 there is no restriction of the initial values. Every initial value of
the new variable yields the same long-time behavior of the system, because the steady
state of the adjoint system is always globally stable. The disadvantage is that the
dynamics is only in the limit case exactly the same as in the untransformed system.
Therefore, the question remains what happens if the small parameter ε is highered to
finite values. In most cases surely the qualitative behavior will remain unchanged but
also further bifurcations can occur.

Transforming high-molecular reactions into elementary bimolecular ones we re-
stricted ourselves to the irreversible case. Because every reversible reaction can be
understood as the sum of two independent irreversible reactions, all statements are
valid also for the reversible case.

The proposed scheme for a transformation of an arbitrary ODE into a MAK-
system (including steps 3 and 4 or not) can be used to propose a suitable MAK-model
if the behavior of the system which one wants to simulate resembles the behavior of
a known (non-MAK) dynamical system. This model may be reduced by successively
cancelling not necessary elements (reactions, variables) and/or improved by adding
further elements.
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